Offering Branch	es ME			
Course category:	Program Core	Credits	4	
Course Type:	Theory	Lecture-Tutorial- Practical:	3-1-0	
		Continuous Evaluation:	30	
Prerequisites	Nil	Semester End Evaluation:	70	
		Total Marks:	100	
Course Outcomes				
Upon successful c	completion of the course, the student will be ab	le to		
CO1	Learn the terminology and basic concepts and capable of analyzing zeroth and first l thermodynamics	Learn the terminology and basic concepts of thermodynamics and capable of analyzing zeroth and first law of thermodynamics		
CO2	Analyze Second law of thermodynamics a	nd working of	L4	
	various devices with heat and work transa	various devices with heat and work transactions.		
CO3	Assess quality and quantity of energy and	Assess quality and quantity of energy and analyze Exergy		
CO4	Recognize and understand different phase and familiarize with saturated and superhe tables and charts	L2		
CO5	Learn power producing thermodynamic cy	L1		
	ative performance			
	Course Content			
UNIT-1	INTRODUCTION: Macroscopic and microscopic viewpoints, definitions of thermodynamic terms, quasi – static process, point and path function, forms of energy, ideal gas and real gas, Zeroth law of thermodynamics. FIRST LAW OF THERMODYNAMICS:		CO1	
	Joule's experiment - first law of corollaries- perpetual motion machines of f applied to non-flow and flow process- limit of thermodynamics.	thermodynamics, first kind, first law tations of first law		
UNIT-2	SECOND LAW OF THERMODYNAMICS: Kelvin - Planck statement and Clausius statement and their equivalence, corollaries - perpetual motion machines of second kind - reversibility and irreversibility, cause of irreversibility - Carnot cycle, heat engine, heat pump and refrigerator, Carnot theorem, Carnot efficiency.			
UNIT-3	IIT-3 ENTROPY:			

19ME3302 - ENGINEERING THERMODYNAMICS

	Clausius inequality - Concept of Entropy- entropy equation			
	for different processes and systems, Maxwell relations, TdS			
	equations			
	AVAILABILITY AND IRREVERSIBILITY:			
	Definition of exergy and energy, expressions for availability and irreversibility Availability in steady flow, non-flow			
	and ineversibility. Availability in steady now, non-now			
LINIT_/	PROPERTIES OF STEAM AND LISE OF STEAM			
0111-4	TABLES'			
	Pure Substances P-V-T surfaces dryness fraction property tables			
	T-s and h-s diagram (Mollier chart), analysis of steam undergoing	CO4		
	various thermodynamic processes using Mollier chart- steam			
	calorimetry.			
UNIT-5	THERMODYNAMIC CYCLES:			
	Otto, Diesel, Dual Combustion cycles, Sterling Cycle, Atkinson			
	Cycle, Ericsson Cycle, Lenoir Cycle, Brayton Cycle – Description	CO5		
	and representation on P–V and T-S diagram, Thermal Efficiency,			
	Mean Effective Pressures on Air standard basis – comparison of			
	Cycles.			
Toyt books:	1 DK Nag Engineering Thermodynamics E (o Tata MaC	aw Uill		
Text DOOKS.	1. P.K.Nag, Engineering Thermodynamics, 5/e, Tata McGraW Hill, 2013			
	2. Van Wylen, Fundamentals of Classical Thermodynamics G Llohn			
	Wylie / S chand Publications			
	wyne./ S chand Publications.			
Reference	1. Yunus A. Cengel, Michaela A. Boles, Thermodynamics, 7/e,			
books	Tata McGraw Hill, 2011.			
	2. P.L.Dhar, Engineering Thermodynamics a generalized			
	approach, Elsevier			
	3. J.B.Jones and G.A.Hawkins, Introduction to Thermodynamics,			
	2/e, John Wiley & Sons,2012.			
	4. Moran, Michael J. and Howard N. Shapiro, Fundamentals of			
	Engineering Thermodynamics, 3/e, Wiley, 2015			
	5. Claus Borgnakke Richard E. Sonntag, Fundamentals of Thermodynamics, 7 (a. Wilcow 2000			
	I NERMOUYNAMICS, //e, WIEY, 2009			
	o. K.K. Kajput, S.Chand& Co., Thermal Engineering, 6/e, Laxmi			
	publications, 2010.			
e- Resources &	1. https://nptel.ac.in/courses/112/105/112105266/			
other digital	2. https://nptel.ac.in/courses/112/105/112105220/			
material	3. <u>https://nptel.ac.in/courses/101/104/101104067/</u>			
	4. https://nptel.ac.in/courses/101/104/101104063/			
	5. <u>https://nptel.ac.in/courses/103/104/103104151/</u>			

Course coordinator

PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous) II.B.Tech – I Semester Model Paper **ENGINEERING THERMODYNAMICS**

(ME)

Duration:3 Hours

Note: 1. This question paper contains two papers Part A and B.

2.Part A is compulsory which carries 10 marks. Answer all questions in part A.

3.Part B consists of 5 units. Answer any one full question from each unit. Each

question carries 12 marks and may have a, b, c as sub questions.

4.All parts of question paper must be answered in one place.

PART-A

		$5 \times 2 = 1$	0 Marks
		Blooms	CO
		Level	
1.a)	Determine the pressure at a point in the flow system if the flow	3	CO1
	energy is 100 kJ and specific volume 2.5 m3 /kg.		
1.b)	State Clausius statement of second law of thermodynamics.	2	CO2
1.c)	Define Carnot's theorem.	2	CO3
1.d)	Define latent heat of evaporation.	2	CO4
1.e)	Name thermodynamic processes occurred in Lenoir cycle.	1	CO5

PART-B

5×12=60 Mark					
			Blooms	CO	Max.
			Level		Marks
		UNIT-I			
2	a	Explain thermodynamic equilibrium.	2	CO1	6
	b	A turbine operates under steady flow conditions, receiving steam at the following state: Pressure 1.2 MPa, temperature 188°C, enthalpy 2785 kJ/kg, velocity 33.3 m/s and elevation 3 m. The steam leaves the turbine at the Page 3 of 4 following state: Pressure 20 kPa, enthalpy 2512 kJ/kg, velocity 100 m/s, and elevation 0 m. Heat is lost to the surroundings at the rate of 0.29 kJ/s. If the rate of steam flow through the turbine is 0.42 kg/s, what is the power output of the turbine in kW?	3	CO1	6
	OR				
3	a	A gas undergoes a thermodynamic cycle consisting of three processes beginning at an initial state where $p1 = 1$ bar, $V1 = 1.5$ m3 and $U1 = 512$ kJ. The processes are as follows: (i) Process 1–2: Compression with $pV = \text{constant}$. $p2 = 2$ bar, $U2 = 690$ kJ (ii) Process 2–3: W23 = 0, Q23 = -150 kJ, and (iii) Process 3–1: W31 = +50 kJ. Neglecting KE and PE changes,	3	CO1	б

Max Marks:70

.

PVP19

3

		determine the heat interactions Q12 and Q31.					
	b	Derive S.F.E.E stating the assumptions first?	2	CO1	6		
		UNIT-II					
4	a	Why Carnot cycle cannot be realized in practice?	2	CO2	6		
	b	A household refrigerator is maintained at a temperature of 2°C.					
		Every time the door is opened, warm material is placed inside,					
		introducing an average of 420 kJ, but making only a small					
		change in the temperature of the refrigerator. The door is	2	001	6		
		opened 20 times a day, and the refrigerator operates at 15% of	3	02	6		
		the ideal COP. The cost of work is Rs. 2.50 per kWh. What is					
		the monthly bill for this refrigerator? The atmosphere is at					
		30°C.					
		OR					
5	a	Prove the equivalence of Kelvin Planck and Clausius	2	CO2	6		
		Statements of second law of thermodynamics.	2				
	b	A heat pump working on the Carnot cycle takes in heat from a		CO2	6		
		reservoir at 5°C and delivers heat to a reservoir at 60°C. The					
		heat pump is driven by a reversible heat engine which takes in					
		heat from a reservoir at 840°C and rejects heat to a reservoir at	2				
		60°C. The reversible heat engine also drives a machine that	3				
		absorbs 30 kW. If the heat pump extracts 17 kJ/s from the 5° C					
		reservoir, determine i) The rate of heat supply from the 840°C					
		source ii) The rate of heat rejection to the 60°C sink.					
		UNIT-III					
	a Calculate the available energy in 40 kg of water at 750 C with						
6		respect to the surroundings at 50 C, the pressure of water being	3	CO3	6		
		1 atm.					
	b	Distinguish between reversibility and irreversibility.	2	CO3	6		
	OR						
7	a	Explain entropy and disorder. Prove that entropy is a property	C	cor	6		
		of a system.	Z	COS	0		
	b	Calculate the entropy change of the universe as a result of the					
		following processes: 8 M (i) A copper block of 600 g mass and					
		with heat capacity of 150 J/K at 1000C is placed in a pond at	2	CO1	C		
		80C. (ii) The sane block at 80C is dropped from a height of 100	3	COS	0		
		m into the pond. (iii) Two such blocks at 1000C and 00C are					
		joined.					
	UNIT-IV						
8	a	Draw the phase equilibrium diagram for a pure substance on p-	2	COA	C		
		T coordinates. Explain, in brief.	2	004	0		
	b	A steam holding capacity of 4 m3 contains a mixture of					
		saturated water and saturated steam at 2500C. The mass of the					
		liquid present is 1 ton. Determine: (i)Quality; (ii) Specific	3	CO4	6		
		Volume; (iii) Specific Enthalpy; (iv) Specific Entropy and (v)					
		Specific Internal Energy of steam.					
	OR						
9	a	Explain the formation of steam and its properties.	2	CO4	6		

	b	Find the enthalpy and entropy of steam when the pressure is 2	3	CO4	6	
		MPa and the specific volume is 0.09 m3 /kg.	5	04	0	
		UNIT-V				
10	a	Compare Otto, Diesel and Dual combustion cycles.	2	CO5	6	
	b	An air standard Otto cycle has a compression ratio of 7. At the start of the compression, pressure and temperature are 1 bar and 27 0C. If the maximum temperature of the cycle is 727 0C, calculate: i) Heat supplied Page 4 of 4 ii) Net work iii)Thermal efficiency.	3	CO5	6	
OR						
11	a	Derive the expression for thermal efficiency of Ericson cycle on regeneration.	2	CO5	6	
	b	An engine working on diesel cycle has a compression ratio of 15 and cut-off takes place at 5% of the stroke. Find the air standard efficiency.	3	CO5	6	

Course coordinator

HOD